
EuroHPC-01-2019

IO-SEA

IO – Software for Exascale Architectures
Grant Agreement Number: 955811

D2.1
Ephemeral Data Access Environment

Concepts and Architecture

Final

Version: 1.0

Author(s): A. Lopez (Atos), S. Valat (Atos), S. Narasimhamurthy (Seagate),
M. Golasowski (IT4I)

Contributor(s): S. Krempel (ParTec), M. Rauh (ParTec), P. Deniel (CEA),
D. Vasiliauskas (Seagate)

Date: 26.01.2022

Ref. Ares(2022)603179 - 26/01/2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Project and Deliverable Information Sheet

IO-SEA Project ref. No.: 955811

Project Project Title: IO – Software for Exascale Architectures

Project Web Site: https://www.iosea-project.eu/

Deliverable ID: D2.1

Deliverable Nature: Report

Deliverable Level: Contractual Date of Delivery:
PU * 31 / January / 2022

Actual Date of Delivery:
26 / January / 2022

EC Project Officer: Daniel Opalka

*− The dissemination levels are indicated as follows: PU - Public, PP - Restricted to other participants
(including the Commissions Services), RE - Restricted to a group specified by the consortium (including the
Commission Services), CO - Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Title: Ephemeral Data Access Environment

Document ID: D2.1

Version: 1.0 Status: Final

Available at: https://www.iosea-project.eu/
Software Tool: LATEX

File(s): IO-SEA_D2.1-report.pdf

Written by: A. Lopez (Atos), S. Valat (Atos),
S. Narasimhamurthy (Seagate),
M. Golasowski (IT4I)

Authorship Contributors: S. Krempel (ParTec), M. Rauh (ParTec),
P. Deniel (CEA), D. Vasiliauskas (Seagate)

Reviewed by: 1. Max Holicki (FZJ)

2. Jacques-Charles Lafourcrière (CEA)

Approved by: Exec Board/WP7 Core Group

IO-SEA - 955811 1 26.01.2022

https://www.iosea-project.eu/
https://www.iosea-project.eu/

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Document Status Sheet

Version Date Status Comments

0.1 1/12/2021 Outline published Done

0.5 15/12/2021 Ready for WP-internal review Done

0.6 7/1/2022 Ready for internal review - 1st round Done

0.7 14/1/2022 Ready for internal review - 2nd round Done

0.8 20/1/2022 Ready for publishing Done

1.0 26/1/2022 Published Done

Section Status

Executive summary Proofread

Introduction Proofread

Architecture Proofread

Interfaces Proofread

Software Proofread

Summary Proofread

IO-SEA - 955811 2 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Document Keywords

Keywords: IO-SEA, HPC, Exascale, Software, Ephemeral, Services, Architecture

Copyright notice:

© 2021-2024 IO-SEA Consortium Partners. All rights reserved. This document is a project
document of the IO-SEA Project. All contents are reserved by default and may not be disclosed to
third parties without written consent of the IO-SEA partners, except as mandated by the European
Commission contract 955811 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowl-
edged as own by the respective holders.

IO-SEA - 955811 3 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Contents

Project and Deliverable Information Sheet 1

Document Control Sheet 1

Document Status Sheet 2

List of Figures 5

List of Listings 6

List of Tables 7

Executive Summary 8

1 Introduction 9

2 Architecture 11
2.1 Concepts . 11
2.2 Overview . 12
2.3 Task 2.1 - Ephemeral Data Access Environment . 13
2.4 Task 2.2 - NVMe and Non-Volatile Memory usage on data nodes 17
2.5 Task 2.3 - Data Operation Scheduling . 19

3 Interfaces 21
3.1 Ephemeral Services Lifecycle Control . 21
3.2 REST API proof of concept . 24
3.3 Data Movement . 25

4 The LQCD Use-Case 27
4.1 LQCD Application Phases And Files . 27
4.2 Mapping to Datasets And Namespaces . 28
4.3 User Semantics with a Unique Namespace . 28
4.4 User Semantics With Phase Dedicated Namespaces 31
4.5 User Semantics With Many Per-Step Namespaces 33

5 Software 37
5.1 Flash Accelerators . 37
5.2 Motr / CORTX . 41
5.3 ParaStation Management . 48

6 Summary 51

Glossary 52

Bibliography 57

IO-SEA - 955811 4 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

List of Figures

1 IO-SEA’s Modular Supercomputer Architecture. 9

2 Stacking ephemeral services. 15
3 Ephemeral services interactions and setup. 16
4 REST API in the global architecture. 17
5 Overall Architecture: NVRAM/NVMe on data nodes exposed with Motr. 18

6 Mini cluster built by docker-compose to run the REST API proof of concept. 24

7 Description of the workflow of a campaign for the LQCD application. 27

8 Smart Burst Buffer. 38
9 Smart Bunch of Flash. 39
10 Global Bunch of Flash. 40
11 Motr architecture. 41
12 Example of Motr data flow with and S3 service on top. 42
13 Motr objects mapped to different devices, enclosures and racks. 42
14 Mapping of an S3 object to different Motr objects. 43
15 Example ADDB analysis. 44
16 Motr in IO-SEA. 47
17 Orchestration between Slurm and ParaStation Management via its psslurm plugin. . . 48
18 SPANK API implementation differences . 50

IO-SEA - 955811 5 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

List of Listings

3.1 Basic example describing a dataset instance and a SBB service instance. 21
3.2 Example of step definition in the YAML service file. 22
3.3 Example of desired semantics on the Slurm command side. 23
3.4 Example of step definition in the YAML service file. 23
3.5 List of commands available to manipulate the REST API POC. 25
3.6 Possible skeleton YAML file semantics to prefetch files. 25
3.7 Longer proposal from the YAML file semantics to prefetch files. 26

4.1 YAML file for the first scenario of LQCD. 29
4.2 Running the LQCD campaign with the single namespace approach. 30
4.3 YAML file for the first scenario of LQCD with a burst buffer layer. 30
4.4 YAML file for the second scenario of LQCD. 31
4.5 Running the LQCD campaign with the per-phase namespace approach. 32
4.6 YAML file for the step A of the third scenario of LQCD. 33
4.7 YAML file for the step B of the third scenario of LQCD. 33
4.8 YAML file for the step C of the third scenario of LQCD. 34
4.9 YAML file for the step D of the third scenario of LQCD. 34
4.10 Running the LQCD campaign with the per job namespace approach. 35

5.1 Example ADDB record in Motr . 44

IO-SEA - 955811 6 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

List of Tables

1 Basic operations (objects and indices) through the Motr API. 45
2 Object access operations through the Motr API. 46
3 Index operations through the Motr API. 47

IO-SEA - 955811 7 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Executive Summary

This document presents the concepts and architecture of all the software defined in the work package
2 to implement the Ephemeral Data Access Environment. The objective of this work package is to
provide an on-demand data access environment suitable for the needs of applications and workflows
within the IO-SEA project.

The first chapter is an introduction to the work done in the work package. Chapter 2 describes the
technical solution for the Ephemeral Data Access Environment and how it interacts with the other
technical work packages. Chapter 3 describe the interfaces used and provided by the work package.
An example using the LQCD use-case is provided in Chapter 4. Chapter 5 focuses on the software
the participants will bring along to be included in the solution, how they will be modified to achieve
that inclusion and the progress done so far. And finally the summary is provided in Chapter 6.

This report describes our evolved understanding of the work to be done, based on the discussion
process and data sharing during the first ten months of the IO-SEA work package 2. This work is
ongoing and will be refined over the project, which will be reflected in future devliverables.

IO-SEA - 955811 8 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

1 Introduction

This deliverable exposes the design and the key elements for the ephemeral service feature in the IO-
SEA. This feature is a keystone of the solution developed inside this project with strong dependencies
on work to be done in other work packages (mostly work packages 4 and 5).

Today, as a compute job runs, it usually performs its I/O operations on a persistent I/O service and
most of the time a parallel file system like Lustre or GPFS is used. In this scope, the I/O service is a
“perpetual resource”, that is not dedicated to a specific compute job. This approach, widely used in
petascale-capable compute center reaches its limits with the coming exascale era, in particular major
scalability issues are expected.

The ephemeral service brings a new approach to fit the forthcoming exascale challenges. It basically
relies on a very simple idea: as the compute job starts, an associated I/O server, dedicated to this
compute job, will start too. This way, the compute job uses a dedicated service, it does not directly
access a global storage service that can be overwhelmed by the heavy workload of other jobs.

During the run, I/O operations will go through this ephemeral service which acts as a proxy to a
massive object-store that perpetually keeps the data, making the data flow independent from the data
flow of other compute jobs. Ephemeral services bring an explicit proxy level that provides ways to
solve many scalability issues.

Figure 1: IO-SEA’s Modular Supercomputer Architecture.

The ephemeral service relies on the components of the Modular Supercomputer Architecture (MSA):
compute jobs will run on compute nodes, while ephemeral I/O service will run on data nodes. The
ephemeral service starts right before its clients (they are the applications running on compute nodes
involved in the compute job) and it ends right after the compute job ends, after having flushed all data
on persistent storage. Its lifecycle is related to the compute job’s lifecycle.

IO-SEA - 955811 9 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

The ephemeral service is a central concept. On one side, it is system-oriented and is a keystone of
the IO-SEA solution, but on the other side, users will be in "contact" with it as they use it to access
their information.

Work package 2 will develop an Ephemeral Data Access Environment, running on data nodes in the
modular supercomputing environment (Fig. 1), taking advantage of modern hardware such as NVMe
and NVRAM and network-closeness.

The process leading to this report involved presentations to and from the other work packages.
Several global cross-work-package workshops and direct meetings with other work packages allowed
us to share information and reach consensus on several concepts.

This is the first major step for Work Package 2, although this is not the final word on the architecture.
As our collaboration with the other work packages continues, some minor adaptations are expected
to better manage any detail that we might have missed and thus provide the best solution for the
IO-SEA project.

IO-SEA - 955811 10 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

2 Architecture

2.1 Concepts

In the context of ephemeral services, two concepts are of key importance: the notion of a dataset
and the notion of a namespace. As these concepts are relevant to the entire storage architecture of
IO-SEA, they have been defined jointly, involving participants from all work packages (in so called
“cross-work-package sessions”).

The IO-SEA storage architecture plans to store data inside a massive object-store. Object-stores are
known for being very scalable, they will fit the requirements in terms of performance and scalability
for exascale storage, but this enhanced scalability has a cost: an object-store is a “bag full of data”, it
does not store files in a hierarchical name-space (stored in directories and subdirectories, using a
classical POSIX tree-like architecture we are all familiar with), it stores objects in a flat name-space.
Two objects have no connection, they are fully independent from each other, and each of them is
managed independently. An object-store is very well named: it’s a low level service that only stores
data, but it does not organise the data.

Nevertheless, data organisation is very important and meaningful for end users: user data will be
made of bunches of records (for example many files coming from experiments or scientific studies
involving older simulation runs) where pieces of data explicitly depend on each other. Datasets and
namespaces exist for providing such an organisation that does not exist inside the object-store.

Both datasets and namespaces basically group data and both concepts are related. A dataset
group pieces of data that have reasons to stay together, that will be used together: for example,
weather data on a given time and location, a collection of microscopy pictures of a given organ,
data representing a set of atomic particles involved in a quantum physics experiment, . . . Whatever
their connection, they have to stay together and will be used as a whole. Keeping those pieces of
data grouped is natural and this is required for keeping good performances and making optimisation
possible. For example, if you manage thousands of files or objects, it’s clearly wise to store them on
the same tapes, otherwise accessing them will result in tens or hundreds of tapes being mounted by
the tape robot, an operation that will waste a lot of time.

A namespace describes the way the data is seen by the end user, how the end user gives names to
the pieces and data and how he organises them. For example, a NFS server exposes namespaces
for the clients that mount it. The user will then see a classical hierarchical tree-based organisation,
with directories containing files and subdirectories.

Datasets and namespaces work together, they are two sides of the same coin: a namespace is
always built on top of a dataset, and the namespace will expose to the users an organised view of the
data inside the dataset. From a stratospheric point of view and making an analogy with the filesystem
logic, a namespace is mostly related to metadata (similar to the filesystem’s metadata) and a dataset
is closely connected to the content of the files.

These two concepts are very important in IO-SEA and they are connected to different IO-SEA work
packages:

• Namespaces are mainly addressed by Work Package 5.

IO-SEA - 955811 11 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

• Datasets are very important in Work Package 4 which is responsible for moving the data
between storage tiers via Hierarchical Storage Management (HSM) feature.

• Metrics retrieved by Work Package 3 should take those concepts into account while designing
its monitoring solution.

Coming back to ephemeral services, this feature deals with both concepts:

1. Before it starts, the ephemeral service acquires the dataset and it will possibly update it during
the run.

2. The ephemeral service exposes the namespace built on top of this dataset to the end user
during the run.

3. As it ends, the ephemeral service flushes all data to persistent storage, it closes the namespace,
and it releases the dataset that is now available for another job associated with another instance
of an ephemeral service.

For example, let’s imagine that you are managing with your smartphone the pictures taken during
your holidays. The list, or catalog of all your pictures, is a dataset, it tells you where the pictures
are inside your phone’s memory, but it shows no organisation. When you connect your smartphone
to the computer a window appears that helps you browsing the pictures. They may be sorted in
different folders/directories by data, or type (video and fixed pictures), or location (via a GNSS tag),
. . . The system has started an ephemeral service to pop-up the window, the tree that you browse is a
hierarchical namespace.

The dataset and namespace concepts are important to the ephemeral services, and the ephemeral
service is the only feature to deal with both concepts. As said above, they are two sides of the same
coin, and WP2 has to take care of these two faces of data management.

2.2 Overview

Applications will access data through some specific I/O services. These I/O services will be instanti-
ated for a given workflow and destroyed when no longer needed. This is why they are referenced as
ephemeral. The ephemeral I/O services have two main benefits:

1. Allow applications to access data stored in a format they do not know how to handle,

2. Accelerate the access to that data.

In the IO-SEA context, an application can be written to access data as files on a POSIX filesystem,
or to access data stored as objects in an object-store such as Motr [1]. The first goal of ephemeral
services is to allow an application to access data stored in a format it was not written for, on-the-fly
converting the data between POSIX files and objects. This conversion requires that a mapping is
established between the structure present in the storage and the structure presented to the application.
In the case of an object-store, the structure is given in buckets and object IDs (OIDs); while for a
POSIX filesystem, it will be given in terms of directories and file names. The structure used for the
presentation is called a namespace.

IO-SEA - 955811 12 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Ephemeral I/O services run on the module’s data nodes. A data node is a cluster node dedicated
to provide I/O services and located, network-wise, close to the compute nodes (see Fig. 1). They
are equipped with multiple NVMe [2] and NVRAM [3] devices used to locally store the workflow’s
data. Prior to launching the application, data is brought to the data nodes from the long-term storage
module using the Hierarchical Storage Management (HSM) interface developed by Work Package 4.
Using the fast local storage and helped by their closeness to compute nodes, data nodes achieve the
second goal. Later, when the application has finished, new and modified data will be sent back to the
long-term storage.

The ephemeral services life-cycles are directly associated to the steps’ lifecycle and indirectly
associated to the workflow’s lifecycle. A workflow is a sequence of steps; each step being an
application running on a computing module. An ephemeral service running on the module’s data
nodes is used by one or more (possibly consecutive) steps. Before starting a step, its ephemeral
service is instantiated and the required data loaded in it from the long-term storage. After the step
is finished, the next ephemeral service is instantiated, the data from the previous one is transferred
to the new one and then the old service is terminated. Two consecutive steps can use the same
ephemeral service, avoiding the need for data transfer. When the last step finishes, the data is
transferred to the long-term storage. It is also possible to transfer data to the long-term storage during
the intermediate steps.

Users will be able to express their requirements in terms of datasets, namespaces, data accessors
and ephemeral services when launching their workflows. They can select the input, intermediate and
output datasets, which ephemeral services will be launched and their size. These requirements will
be completed with recommendations from the monitoring tools implemented by Work Package 3.

The work in Work Package 2 is divided into three tasks:

Task 2.1 Define the data accessors and I/O services we will focus on, adapt them to be ephemeral,
define their lifecycle and provide a common interface allowing ephemeral instantiations. This is
presented in Section 2.3.

Task 2.2 Adapt those same services to use NVMe and NVRAM1 as local storage. The work in this
task is presented in Section 2.4.

Task 2.3 Receive the user requirements, allocate the resources (data nodes, NVMe storage, NVRAM
storage, etc.) and orchestrate the deployment of the required IO services. This work is
presented in Section 2.5.

2.3 Task 2.1 - Ephemeral Data Access Environment

This section will discuss the global architecture we are considering to manage the ephemeral services.
We split the discussion into three sub-sections. The first one focus on the ephemeral services that
will be used. The second discusses the operations required to start, configure and use the ephemeral
services. Finally, the third discusses, from an architectural aspect, how to deploy and manage the
services based on user requests.

1Some services are already able to use NVMe storage, but none of them able to use NVRAM

IO-SEA - 955811 13 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

2.3.1 Considered Ephemeral Services

The ephemeral I/O services considered are taken from this non-exhaustive list:

• Atos Flash Accelerators [4] is a suit of ephemeral services for accelerating user’s jobs by using
the NVMe storage available on the data nodes. It has three working modes:

- Smart Burst Buffer (SBB) is an intelligent burst buffer providing a POSIX interface on
top of an existing POSIX parallel filesystem or an S3-compatible object-store. It provides
two levels of local cache: RAM and flash storage. A third level will be added to handle
NVRAM.

- With Smart Bunch of Flash (SBF) each compute node running a step of a workflow has a
dedicated NVMe storage present on the data nodes, which is exposed to the compute
nodes through NVMe-oF. It can be used as a fast temporary POSIX storage.

- Global Bunch of Flash (GBF) deploys an ephemeral parallel POSIX filesystem on the data
nodes using the NVMe devices. Compute nodes participating in the workflow’s step will
mount this filesystem.

• Seagate’s CORTX [1] provides an S3 interface with access management used to access the
Motr object-store.

• The CEA’s NFS Exporter is used to expose Motr objects into a POSIX namespace.

2.3.2 Ephemeral Services Lifecycle

The instantiation of the ephemeral services requires several operations to be performed in order to
get the environment ready for use.

The first operation consists of allocating the necessary resources. It requires finding the adequate
data nodes with enough NVRAM and NVMe space, memory and CPU available to run the requested
ephemeral services. The detailed actions of this operation are discussed in the Section 2.5 focused
on the Yorc orchestrator [5] and possible alternative solutions.

Once the data nodes have been identified, the system needs to start the ephemeral services on
the allocated data nodes and eventually make the link between the various services if they need
to interact. The first stage consists of starting the ephemeral services used to instantiate the
namespaces requested by the user. It relates to the CORTX NFS and S3 server to make the
namespaces accessible via their protocol. Recall here that those services (NFS, S3) directly translate
the incoming requests into Motr operations, as such, they do not offer any caching to accelerate the
I/O.

In a second operation, we look at the possible interactions between the ephemeral services to boost
the I/O performance on the data nodes as presented in the Fig. 2. Here, we consider adding caching
with a local Motr to prefetch (via the HSM mechanism) the user data into the local NVMe or NVRAM.
This use case is a novel approach to Motr which is described in the Section 2.4. A simpler scenario
consists in adding a SBB instance on top of the namespace services (NFS or S3) to use the local
RAM and flash memory as caches in order to provide a faster access to the data exposed by those

IO-SEA - 955811 14 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

namespaces. Similarly, we can also copy a directory from the NFS namespaces to a local SBF or
GBF service to make a local cache and flush out the data when the application ends.

Storage

Datanode

Motr

Local Motr (optional)

Cortx NFS

Smart Burst Buffer

Dataset cats Cortx NFS Dataset dogs Cortx S3 Dataset cars

Compute APP

Figure 2: Interactions of services inside a data node to be stacked adding accelerator and local
caches to the data access path.

Finally, the setup operation will then configure the compute nodes so that the user can use the
requested ephemeral services. The global picture of all this chain is presented in Fig. 3 and shows
the point of impact of each component and global interaction on the system. On the compute
nodes the configuration will be done by setting environment variables and/or mounting the remote
filesystems into the local filesystem. We can hence summarize the service operations as listed
below:

• For SBB, the client-side configuration only consists of setting some environment variables. We
first need to bind the client-side library to the client application via the special LD_PRELOAD
environment variable. This library is called iolib and intercepts the POSIX I/O functions. The
library can load modules to expand its behavior. The IOLIB_MODULES environment variable
instructs the library which modules to load. In this case, we will load the libsbb module. Some
extra environment variables are used to configure the SBB module:

SBB_PROXY_RDMA to tell how to reach the SBB server.

SBB_PROXIED_TARGETS which paths (targets) to capture and send through the accelerator.

SBB_PARAMS to report its basic configuration to the IO Instrumentation tool (involved in
Work Package 3).

• The configuration of the NFS client requires operations as a privileged user (usually root) to
mount the remote filesystem.

• The GBF also requires mounting the filesystem on the client node in a manner very similar to
the NFS approach.

IO-SEA - 955811 15 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

• The SBF requires importing the remote NVMe device over the InfiniBand fabric and mounting
the filesystem.

• The S3 server requires finding a convention in order to transmit the address and port exposed
by the server. We use a simple URL that is to be stored in an environment variable, to be used
by the user’s application. We might consider several S3 servers (one per namespace) which
results in several addresses to be transmitted to the user. In this case, we might provide a file
in the environment variable in place of the address itself, and list the addresses in this file. We
should, in this case, provide a key/value definition with a name for each address so the user
can easily distinguish them.

As we consider using Slurm as the job manager in the IO-SEA cluster, these operations should be
triggered by a Slurm plugin. For the implementation we may choose to extend the Slurm burst buffer
plugin as already done at Atos for the Flash Accelerator products (SBB, SBF, GBF) and in the SAGE
2 European project regarding CORTX/Motr.

Flash Accelerator

NVDIMM

Data Node

posix (luster/nfs)

S3

Motr API

Motr Phobos

FA client

NFS serverNFS client

Core storage serversClients

NVMEoF NVMEoF

Motr ephemeral
server

Lustre NFS

RAM

Cortx S3 serverS3 client

GBF client GBF

Figure 3: Overall interactions and places used to setup the ephemeral services on clients and data
nodes.

2.3.3 Control Architecture

In order to control the life cycle of the ephemeral services we need an orchestrator which will be
discussed in Section 2.5 to manage the data node resources and decide where to launch the
ephemeral services. At this stage, we do not consider the client providing its requirements in the
native format handled by this orchestrator. As the representation is too low level for most users,
we do not consider exposing it. We prefer defining a YAML [6] file tuned for the IO-SEA semantics,
which will be translated into the orchestrator language. The YAML file semantics will be discussed in
Section 3.1 and should be simple to use and understand for the final users.

In order to perform this translation, we will add a REST API between the Slurm plugin and the
orchestrator. This REST API will have the responsibility to:

IO-SEA - 955811 16 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

• Translate user requests (the YAML file) into the orchestrator language.

• Track the state of the workflow progression to request the starting / ending of the ephemeral
services.

• Report the ephemeral services status.

• Provide the necessary information to configure the client node for the given ephemeral services.

This architecture is summarized in Fig. 4. The usage of an intermediate REST API is also a way
to make a clear role distinction and take most of the work done out of Slurm so we can consider at
some point an integration into other job managers for the cluster. We can also consider changing the
orchestrator in use by adapting the REST API implementation.

OrchestratorSlurm

Figure 4: Global architecture showing the place of the REST API in the control path from Slurm to
the services on the data nodes.

When making an implementation of this REST API we will need to take care of the authentication
method so we can guaranty that only Slurm can call it. This can be done with a JSON Web Token
(JWT) base authentication, as used by most web services.

2.4 Task 2.2 - NVMe and Non-Volatile Memory usage on data nodes

This section presents work on allowing existing ephemeral services to use data node-local NVMe
and NVRAM devices. We begin by reviewing flash memory technology and then discuss how it will
be used by the ephemeral services.

The data nodes are assumed to have very fast, low-latency persistent storage resources, namely
NVRAM and storage based on the NVMe access protocol. These resources temporarily manage
objects during the ephemeral workflow execution. Objects are then down-migrated to lower-tier
storage. The NVMe protocol as well as NVRAM technology offers improvements in latency and
throughput. There has been research on various types of NVRAM technologies such as STT-MRAM
[7], Memristor [8], PCM [9], etc. 3DXPoint technology [10] from Micron/Intel is the technology currently
available in the market place, which is a kind of PCM. The following picture provides an idea of the
performance improvements that can be availed by NVRAM technology and the NVMe protocol.

IO-SEA - 955811 17 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

The NVRAM technology can both extend the available memory address space (and is available in
DIMM form factor, called NVDIMMs) and can also be used as a block storage device (available as a
PCI-E device). It is also possible to expose the NVDIMMs as a block device using software [11].

We next describe the overall architecture of the data nodes exposing these high-speed low-latency
storage resources, which extends some of the concepts available with CORTX Motr.

2.4.1 Overall big picture of NVRAM/NVMe resources in data nodes

The overall architecture of NVRAM/NVMe exposed within data nodes is described in Fig. 5 below.
The data nodes run ephemeral services as described earlier. Some ephemeral services interact with
the Motr API instances on the data nodes, while others run by themselves.

Motr Services

Motr services corresponding to the Motr API instances are also assumed to ephemerally run within
the data nodes. Motr hence can act as both a client and a server within these ephemeral nodes. The
Motr services expose the data on the NVRAM/NVMe as objects. The Motr services on any data
node can provide a unified object namespace across objects in other data nodes as well. NVRAM
resources could either be in DIMM or PCI-E block device form factor. Such a unified addressing
needs to be developed in the IO-SEA project.

Figure 5: Overall Architecture: NVRAM/NVMe on data nodes exposed with Motr.

The Motr services are planned to be initiated and torn down similar to the other ephemeral services.
More details on Motr are provided in Section 5.2.

HSM services are used to migrate the objects within NVMe/NVRAM in the data nodes to longer term
persistent storage tiers at the end of the workflow. These are described separately.

We also show an object ID service that will be availed by the various ephemeral services to manage
their name spaces. The object ID services make sure that OIDs allocated by Motr are uniquely
provided to each of the services.

IO-SEA - 955811 18 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Object ID’s and Object ID Service Motr has 128-bit object IDs. This means that there are 2128 OIDs
to choose from. This is a vast ID space. On the other hand, during object creation, applications
and ephemeral services need to be supplied with free OIDs, that is, OIDs that are not already taken
by other applications nor ephemeral services. Guaranteeing an OID is free is impossible unless
there is a centralised object ID manager service because a Motr cluster is a distributed environment
and applications and services running on Motr are also completely distributed. Simple random ID
generation methods are easily prone to collisions. Cryptographic hash-based methods are also not
guaranteed to be collision free. Besides, random and hash-based methods definitely will not use the
entire key space. Therefore, an ID service that can guarantee free object IDs, use entire ID space
and also divide the ID space into mutually exclusive sub-spaces so that different kind of services can
use keys from different sub-spaces is required.

Stand-Alone Services

Other ephemeral services such as Flash Accelerators do not require Motr to be running on the data
node. These services will be modified to also take advantage of the NVMe and NVRAM devices
available on the data nodes.

Atos will extend Flash Accelerators’ Smart Burst Buffer (SBB) to integrate a remote mapping feature
to a very large file, allowing to map a set of data from many compute nodes that could not fit into
local memory.

mmap() is a system function allowing to memory-map a file on storage as if it was present in the
system memory, and access it by reading and writing into that memory. Using mmap()-like semantics,
it will be possible for applications running on the compute nodes to memory-map into NVRAM a file
through the Smart Burst Buffer ephemeral service, taking advantage of the persistence provided by
the NVRAM technology. This will be done leveraging technology developed in the Sage2 project
[12].

More information on Flash Accelerators can be found in Section 5.1.

2.5 Task 2.3 - Data Operation Scheduling

The data operation scheduling can be divided in two consecutive tasks that have to be handled. The
former being life-cycle handling of the ephemeral services and the latter task is optional staging of
the input data to the resources exposed through the ephemeral services. In this section we describe
a draft of the implementation of the first task.

As mentioned already in Section 2.3.3 the life-cycle of the ephemeral services will be handled by Yorc
orchestrator through a Slurm plugin. It is a complex piece of software which can handle extensive
number of use-cases. In this case, the orchestrator will be used to deploy a number of predefined
topologies described in TOSCA/Terraform standard, where each topology corresponds to a particular
type of ephemeral service.

Yorc is a software that provides abstraction over deployment topologies capable of handling various
compute resources, including commercial cloud providers, bare-metal machines or HPC clusters.

IO-SEA - 955811 19 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Workflow execution is supported as well, which allows custom definition of application life-cycles.
Ephemeral services in IO-SEA stack can be represented by applications in Yorc, which in turn are
deployed in environments [5, 13].

The responsibility of the REST API in front of the Yorc will be to parse the YAML file and Data Access
and Storage Interface (DASI) description supplied by the Slurm plugin to a set of calls to the Yorc
and HSM API which will result in deployment of the requested ephemeral services and staging of the
requested data on the allocated resources.

Resources for the services can be either bare-metal (data nodes) or virtualised (Cloud API, Open-
Stack). In the next phase of development we will explore both options and determine their viability. In
both cases Yorc will handle their allocation and instantiation as part of the deployment process. This
also means that Yorc will be responsible for tracking and selecting the available resources. Templates
for the individual services are part of the REST API configuration.

The REST API of the scheduling service will be used by the SPANK plugin which will forward the
YAML description and DASI description of the requested datasets. The lifecycle of the services will
be handled within the context of a named session. The session is created upon start of the workflow
execution and terminated at its end. Part of the YAML description of the requested services is the
concept of steps, which are triggered as the workflow advances through its tasks. This concept is
used to describe the dependencies between the workflow tasks and ephemeral services as one
service can be reused by multiple tasks. The Yorc will be used together with other SPANK plugin
such as burst buffer to handle provisioning of the storage resources for the ephemeral services.

Monitoring data from the REST API itself, the deployed services or the SPANK plugin can be provided
to external services such as the ParaStation Healthchecker to provide health and performance
auditing. The HealthChecker will especially need and use information about which ephemeral service
shall run where and at what time to check if the services start and stop correctly and are available
if they are expected to be by the jobs. This monitoring approach will be described in detail in the
upcoming deliverable D3.1.

IO-SEA - 955811 20 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

3 Interfaces

Users need to request the ephemeral services they require for their applications. At the same time,
the ephemeral services need to interact with other components developed by other work packages.
All these interactions happen through interfaces, which are described in the next paragraphs.

3.1 Ephemeral Services Lifecycle Control

As discussed in Section 2.3.3, the user will request its ephemeral environment by providing a YAML
file listing the services he wants. This file will be provided to the REST API to be translated into
operations to start and configure the ephemeral services. Here, we consider the use of a YAML file
because there are too combinations of ephemeral services and namespaces that can be instantiated.
In this section we will not provide a detailed final definition of this file format, but focus more on the
semantics components it needs to take into account and on basic examples to understand its logic.
The final detailed format will be fixed upon implementation.

The YAML file should first list all the services required to run the application. In practice, it will name
of the ephemeral services, describe their type and their location on the cluster modules. This basic
definition will be completed with a list of parameters used to implement the service or tune it. We
recall here that there are various types of services:

Dataset and namespace instance: We consider here the NFS and S3 servers which are the key
components to make the datasets and namespaces alive and accessible. In other words, these
ares the services used to instantiate those namespaces.

Accelerators: We consider here the services like SBB, GBF, SBF or the local Motr which are
responsible of making a local copy of the data to accelerate the data transfers. In the file
description we might consider two subcategories. First the accelerators which run by themselves
to accelerate the access to an existing storage in the cluster. We can give as an example an
instance of SBB to access files stored into the cluster Lustre filesystem. Second, the accelerator
used to accelerate the accesses to an IO-SEA namespace. In this case we need to take care
of linking the accelerator to the related namespace service so we can make the local setup in
the data node to access it.

services:

- name: cats
location: cpu_module
cortx_nfs:

namespace: my_cats_namespace_id
mountpoint: /media/myuser/cats

- name: sbb_on_cpu_module
location: cpu_module
service_dependencies:

- cats

IO-SEA - 955811 21 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

smart_burst_buffer:
targets: /nfs/myuser/dir1,/nfs/myuser/dir2,/media/myuser/cats
datanodes: 2
datanode_cores: 16
datanode_mem: 4GB
datanode_flash: 32GB

Listing 3.1: Basic example describing a dataset instance and a SBB service instance.

Looking at the applications presented by Work Package 1, it appears that many of them are used to
run various steps to progress in a global workflow. Each of these steps might require special services
which might not be required by other steps. Hence, we propose to add a step definition in the YAML
file to describe the lifecycle or the services over the workflow. At the moment, we consider describing
the steps of an application and leave it to the user to move from one step to another. Each step will
be described by a name and a list of services to be enabled. An example of step definition is shown
here:

services:

- name: cats
//...

- name: sbb_on_cpu_module
//...

- name: sbb_on_gpu_module
//...

steps:
- name: step_1

services:
- cats
- sbb_on_cpu_module

- name: step_2
services:

- cats
- sbb_on_gpu_module

Listing 3.2: Example of step definition in the YAML service file.

The given YAML file describes a service implementing the cats namespace and being enabled for the
two steps. In addition, we enable a SBB instance on top of this cat service on the local module,CPU
for the step_1 and GPU for the step_2. The REST API will be responsible for stopping the first SBB
and starting the second one while moving from one step to another. Notice that if both steps are
running in parallel we will have the two SBB instances also running at the same time for the two jobs
requiring them.

We note here that we decided to define the service location directly in the service definition such
that the users controls explicitly where they want the service to be deployed. We have discussed
an alternative which consists of moving this declaration into the step giving the REST API the
responsibility to find the right location for a services if the service is used in multiple steps. One

IO-SEA - 955811 22 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

counter argument against this approach is that the REST API does not have information on the
relative weight of each step so it might have difficulties in making the right decision if a server should
be used by steps in various locations.

We described the philosophy of the YAML file to be used by the user to express their requirements in
terms of ephemeral services. In practice, this file should be transmitted to the REST API via Slurm
such that it is used during the instantiation of the listed services. In terms of the command line, this
might be done by using the srun or sbatch commands, giving an option with the YAML file and other
options specifying which steps the job is running.

The semantics are not yet strictly defined, but they can translate to something inspired by what is
done in the Atos Flash Accelerator product with the Slurm burst buffer plugin and comes to:

launch a single-step workflow
srun --ephemeral "services-single.yaml" --bb "EPH" ./myapp

start a workflow for a multi-step run
srun --ephemeral "services-session.yaml" --bb "EPH NAME=my_workflow START" /bin/true
or can be wrapped in a more friendly way
io-sea-eph-session start --name "my_workflow" --yaml "services.yaml"

run a first step
srun --bb "EPH NAME=my_workflow STEP=step_1" ./my_app_step_1

run a second step
srun --bb "EPH NAME=my_workflow STEP=step_2" ./my_app_step_2

terminate a workflow for a multi-step run
srun --bb "EPH NAME=my_workflow END" /bin/true
or can be wrapped in a more friendly way
io-sea-eph-session stop --name "my_workflow"

Listing 3.3: Example of desired semantics on the Slurm command side.

We had an interesting exchange with Work Package 1 with respect to how the semantics should
be used by their applications. One point is that it might be interesting to have several steps used in
parallel because the workflow of their application is not necessarily linear. We might want to also go
back from one step to a previous one without considering a specific order. We notice here that it does
not change the definition we made before but just requires to be flexible enough in the implementation
of the REST API. If we want a service running during the whole workflow, we might list it in every
step for it not to be stopped when moving from one step to another.

Based on recent discussions regarding non-linear workflow support, we are currently converging on
a slight adaptation of the step service list definition in the YAML file so we can optionally annotate
the service name with a start/stop keyword to declare what is the desired operation to apply when
the step starts. This might answer the question of the service end of life in the non-linear scenario.
Consider:

services:

- name: cats

IO-SEA - 955811 23 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

steps:
- name: step_1_start_cats

services:
- cats:start

- name: step_2_stop_cats
services:

- cats:stop

Listing 3.4: Example of step definition in the YAML service file.

3.2 REST API proof of concept

During the past months a small proof of concept (POC) was quickly developed to try and play with
this semantics. This was useful in discussing with the partners to converge on a global picture
of the way we will interact with the user. It was done as a REST API based on Python’s Flask-
RESTPlus framework and Yorc as orchestrator configured to be able to launch a fake SBB script. Its
implementation currently considers the linear workflow semantics and does not allow multiple steps
active in parallel. The POC is installed in a small Docker cluster composed of:

• A container for the REST API.

• A container for Yorc.

• A container to be scaled for a fake SBB datanode.

The use of Docker Compose permits one to quickly setup the POC environment on any development
machine and play with it. Although this might be usable for the SBB server, we will have to think
how to extend it if we at some point want to have real services including Motr which requires a
virtual machine instead of a container. Fig. 6 show the topology of the POC mini cluster built by
docker-compose.

REST API YORC

Datanode 1

Datanode 2

./ephemeral.sh create …

curl http://localhost:5000

Fake SBBD

Fake SBBD

Docker Docker Docker

Docker-compose

Figure 6: Mini cluster built by docker-compose to run the REST API proof of concept.

IO-SEA - 955811 24 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

This REST API will mostly be controlled by Slurm, so for most operations it will not be directly exposed
to the user, but it shows how Slurm will interact with it. The commands currently considered are:

register a new session giving the YAML file
./ephemeral.sh create {SESSION_NAME} {YAML_FILE}

move to the given step
./ephemeral.sh step {SESSION_NAME} {STEP_NAME}

Get status of the services attached to the session
./ephemeral.sh status {SESSION_NAME}

Get the services information needed to configure the client
./ephemeral.sh info {SESSION_NAME}

Get the logs for the given service in the session
./ephemeral.sh logs {SESSION_NAME} {SERVICE_NAME}

Terminate the running services
./ephemeral.sh terminate {SESSION_NAME}

Purge all information of the service
./ephemeral.sh purge {SESSION_NAME}

Listing 3.5: List of commands available to manipulate the REST API POC.

3.3 Data Movement

When the ephemeral services have been spawned in the data nodes, we might want to prefetch
some of these objects into those services so the user can get a faster access to these objects. This
prefetch operation should be done by the HSM mechanism from Work Package 4 when considering a
local Motr instance.

For the Flash Accelerator product (SBB, SBF and GBF) we might, in a first stage, consider the user
calling Slurm to run a job dedicated to read the data or make a copy to the local storage.

A more advanced feature would be to make the HSM commands from Work Package 4 interacting
with the ephemeral services and being able to move to data not only inside Motr, but also into the
Flash Accelerator services.

As an even more advanced approach, we might be able to put the prefetch requests in the YAML file
for the burst buffer plugin moves the data before running a job on the related ephemeral services.
This approach might call the HSM command as a backend.

As it is an advanced feature and can be considered as an extension, we can work on it when all the
other features are available. In the YAML file, it could take the following form:

services:

- name: cats

IO-SEA - 955811 25 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

//...
- name: sbb_on_cpu_module

//...

steps:
//...

prefetch:
- service: sbb_on_cpu_module

members:
- cats/black−*.jpg
- cats/gray−*.jpg

Listing 3.6: Possible skeleton YAML file semantics to prefetch files.

This part is still in preliminary discussions but we can think of an extension providing a more fine
grain control via data movers which can be called from the steps.

services:

- name: nfs_lqcd
cortx_nfs:

namespace: my−run−2021−12−1−lqcd
mountpoint: /mnt/USER/lqcd

data−movers:
- name: lqcd

service: nfs_lqcd
prefetch−on−step−load:

level: flash
elements:

- gauges/*.hdf5
archive−on−step−finish:

level: tapes
elements:

- gauges/*.hdf5

steps:
- name: default

module: cpu
services:

- nfs_lqcd
data−movers:

- lqcd

Listing 3.7: Longer proposal from the YAML file semantics to prefetch files.

IO-SEA - 955811 26 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

4 The LQCD Use-Case

This section will describe some exchanges with the Work Package 1 about the ephemeral services
usage by applications. The goal is to start thinking on how applications can use the semantics we
have presented in the previous chapter. Here we will focus on the LQCD use case [14] from Work
Package 1.

4.1 LQCD Application Phases And Files

As shown in Fig. 7, the use case operates in four phases. A first phase (A) will take the input config
file and will generate a large number of files containing the gauge fields computed by the Markov
chain use by this step. We then use 10% of those files as input for the phase B which reads the input
file and and a configuration file in order to produce propagator files. Phase C take those propagators
files to aggregate the results in the final output file which ends the campaign and phase D will run
post-analysis on the generated output file. This cycle is executed several times, phase A producing
around 400 files per run, which are used by the next phases. In other words, the user runs phases A,
B, C and D and and then check the results. If the obtained results do not have the desired precision,
the user will start again from phase A to get more data in order to improve the final precision. When
the results have the desired precision, the workflow ends.

propagator generation

Linear solver/

input input

combine propagators

generate correlators

~10 props/cfg
2

~10 files/campaign
5

input

repository?

offline analysis

every 5 mins

15kB 5GB

Temporary

Campaign

Forever

remote shareable

2 /minute

~10% used in calculations

1 / min

A B C D

configuration

generation

Markov−chain

checkpoint dump

gauge field config.

~16GB

propagator file

~MB

hadron correlator

Figure 7: Description of the workflow of a campaign for the LQCD application.

This description shows that there are several categories of files to be used or generated by the
application:

• The configuration files used by phase A and B.

• The gauge field files generated by A and read by B.

IO-SEA - 955811 27 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

• The propagator files generated by B read by C which can be considered as temporary files in
the workflow.

• The final output file aggregating the results from C and used by D.

Note here that the files from phase A can be archived for a long-term storage.

4.2 Mapping to Datasets And Namespaces

In the IO-SEA project we had several cross-work-package exchanges where the concepts of dataset
and namespace were discussed to organize the data stored into the object-store. These concepts
will in practice have consequences on the ephemeral services as we will need to instantiate the
namespaces via the NFS or S3 server to make them effectively accessible by the user.

Considering the list of files used by the LQCD application, we can distinguish three different ap-
proaches to organize them into datasets. This can be done by going from the simpler one to the finer
grain one:

• We can first consider an approach close to the current way of using a parallel file system. It
consists of creating a unique dataset and POSIX namespace to store all the files generated
and used by the campaign.

• The gauge-field files might be archived for long term storage, while the rest of the files are
temporary. To express this, we might distinguish their storage and create three datasets. One
for the gauge-field files from phase A, another one to store the propagator files and a last one
to store the final results and all the configuration files used to run each phase.

• We can ultimately consider splitting the datasets in a finer grain strategy by creating a dataset
for each call of phase A run and its following steps. This means creating a dataset for the 400
gauge-fields generated by a unique run of the phase A application. Again creating a dataset for
each run of the phases B and C.

The coming sections will describe how we see the implementation of these three approaches.

4.3 User Semantics with a Unique Namespace

As described, the first scenario consists of creating a unique dataset and POSIX namespace for
the whole campaign. It gives freedom to the application to handle the files in this namespace. The
drawback of this approach is the difficulty that arises when we would like to archive the files from
phase A as they are mixed with the temporary files from phase B in the dataset. This might require the
removal of the files we do not want to archive or to copy the gauge-field files to another namespace.

The service YAML file will be written as listed here:

IO-SEA - 955811 28 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

−−
services:

- name: lqcd−nfs
location: cpu−module
cortx_nfs:

namespace: my−run−2021−12−1−lqcd
mountpoint: /media/USER/lqcd

steps:
- name: default

services:
- lqcd−nfs

Listing 4.1: YAML file for the first scenario of LQCD.

As discussed in the previous sections, we see here the appearance of the NFS service to instantiate
the LQCD namespace which must have been previously created by calling a specific command. We
have now a unique step in terms of storage with a unique service to setup at start-up and to destroy
at the end of the campaign. We chose to name it "default" and it lists all the available services in it (a
single service in this case). Here we can consider a simplification which allows the user to not define
steps when there is only one. We chose to make it explicit here to understand the logic compared to
the coming approaches.

As we get the YAML file we now need to run commands to run the application and exploit the
described ephemeral services. Here, we need to:

• Create the unique dataset and namespace which will be initially empty.

• Upload the initial configuration file into the namespace.

• Register the ephemeral service YAML description file to start the storage session in the REST
API.

• Run the phase A.

• Produce the configuration file for phase B and push it to the namespace.

• Run the phase B

• Run the phase C.

• Run the phase D.

• Eventually loop again on step A, B, C, D to improve the final precision

• Terminate the ephemeral storage session.

We notice here that the cross-work-package meetings did not yet defined precisely the commands
used to handle the datasets and namespaces so we propose here a possible solution which might be
adapted in future discussions. We list them here under a form which shows the interesting concepts
they introduce. Here we mostly consider the availability of an io-sea-ns command which allows one to
create a namespace and to copy a file from the local filesystem to said namespace. The namespace
is considered to be identified by a string. Here, we consider executing these commands from an

IO-SEA - 955811 29 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

interactive login node which leaves open some questions about the way the commands authenticates
themselves when accessing the CORTX infrastructure and interacting with the namespace. Those
questions will be treated during the on-going cross-work-package discussions.

create namespaces
io-sea-ns create --auto-create-dataset my-run-2021-12-1-lqcd

fill config NS with the input config file
io-sea-ns put my-run-2021-12-1-lqcd ./gauge.cfg

register the ephemeral session
srun --eph-services "services.yaml" --bb "EPH START NAME=LQCD_1" true

Run step A
srun --bb "EPH NAME=LQCD_1 STEP=default" ./lqcd_step_A /mnt/USER/lqcd/gauge.cfg

prepare run of step B with its config file
io-sea-ns put my-run-2021-12-1-lqcd ./${ID}/propagator-run.cfg

run step B & C & D
srun --bb "EPH NAME=LQCD_1 STEP=default" ./lqcd_step_B \

/mnt/USER/lqcd/${ID}/propagator-run.cfg
srun --bb "EPH NAME=LQCD_1 STEP=default" ./lqcd_step_C \

/mnt/USER/lqcd/${ID}/propagator-run.cfg
srun --bb "EPH NAME=LQCD_1 STEP=sdefault" ./lqcd_step_D

POSSIBLY LOOP ON PREVIOUS STEPS (A/B/C/D) ?

finish the session
srun --bb "EPH NAME=LQCD_1 END" true

Listing 4.2: Running the LQCD campaign with the single namespace approach.

We might at some point want to add a burst buffer to accelerate the data access to the namespace.
In this case, we will only have to change the YAML file to obtain the following example. Notice
the addition of the burst buffer description and its dependency on the NFS instance allowing the
ephemeral service manager to know that it also needs to mount this service on the data node hosting
the burst buffer.

services:

- name: lqcd−nfs
location: cpu−module
cortx_nfs:

namespace: my−run−2021−12−1−lqcd
mountpoint: /media/USER/lqcd

- name: lqcd−burst−buffer
location: cpu−module
service_dependencies:

- lqcd−nfs
smart_burst_buffer:

IO-SEA - 955811 30 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

targets: /nfs/USER/lqcd
datanodes: 2
datanode_cores: 16
datanode_mem: 4GB
datanode_flash: 32GB

steps:
- name: default

services:
- lqcd−nfs
- lqcd−burst−buffer

Listing 4.3: YAML file for the first scenario of LQCD with a burst buffer layer.

4.4 User Semantics With Phase Dedicated Namespaces

As discussed in Section 4.2, the second approach consists of using dedicated datasets and names-
paces for every phase of the application. This means we will create a separate namespace for phase
A, one for phases B and C, and a third one to store the configuration files and the final results file. In
this case, the service YAML file will look like:

services:

- name: nfs_gauge_fields
cortx_nfs:

namespace: my−run−2021−12−1−gauge−fields
mountpoint: /mnt/USER/gauge−fields

- name: nfs_propagators
cortx_nfs:

namespace: my−run−2021−12−1−propagators
mountpoint: /mnt/USER/propagators

- name: nfs_config_and_out
cortx_nfs:

namespace: my−run−2021−12−1−config−and−out
mountpoint: /mnt/USER/config−and−out

steps:
- name: step_A

module: cpu
services:

- nfs_gauge_fields
- nfs_config_and_out

- name: step_B
module: cpu
services:

IO-SEA - 955811 31 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

- nfs_gauge_fields
- nfs_propagators
- nfs_config_and_out

- name: step_C
module: cpu
services:

- nfs_propagators
- nfs_config_and_out

- name: step_D
module: cpu
services:

- nfs_config_and_out

Listing 4.4: YAML file for the second scenario of LQCD.

On the command line, it should look very similar to the previous approach mostly changing the
creation of several namespaces instead of a single one, and the use of the step definition in the
phase calls.

create namespaces
io-sea-ns create --auto-create-dataset my-run-2021-12-1-gauge-fields
io-sea-ns create --auto-create-dataset my-run-2021-12-1-propagators
io-sea-ns create --auto-create-dataset my-run-2021-12-1-config-and-out

fill config NS with input config file
io-sea-ns put my-run-2021-12-1-config-and-out ./gauge.cfg

register EPH session
srun --eph-services "services.yaml" --bb "EPH START NAME=LQCD_1" true

Run step A
srun --bb "EPH NAME=LQCD_1 STEP=step_A" ./lqcd_step_A /mnt/USER/lqcd/gauge.cfg

prepare run of step B with its config file
io-sea-ns put my-run-2021-12-1-lqcd ./${ID}/propagator-run.cfg

run step B & C & D
srun --bb "EPH NAME=LQCD_1 STEP=step_B" ./lqcd_step_B \

/mnt/USER/lqcd/${ID}/propagator-run.cfg
srun --bb "EPH NAME=LQCD_1 STEP=step_C" ./lqcd_step_C \

/mnt/USER/lqcd/${ID}/propagator-run.cfg
srun --bb "EPH NAME=LQCD_1 STEP=step_D" ./lqcd_step_D

POSSIBLY LOOP ON PREVIOUS STEPS (A/B/C/D) ?

finish the session
srun --bb "EPH NAME=LQCD_1 END" true

Listing 4.5: Running the LQCD campaign with the per-phase namespace approach.

IO-SEA - 955811 32 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

4.5 User Semantics With Many Per-Step Namespaces

This section will now describes the per-step namespaces scenario using dedicated datasets for each
run of the B/C phases. The interest for this approach is the finer grain tracking of the accessed files.
This tracking can be used to provide hints to the lower storage manager to better know how to move
the data from one layer to another. It also permits to use smaller namespaces which might be easier
to handle in the storage hierarchy.

As previously, we first build the YAML file to declare our services. Contrary to the previous examples,
we consider here that we do not start a session for all the steps but use a single YAML file for each
job. We first define the file for step A.

services:

- name: nfs_gauge_fields
cortx_nfs:

namespace: my−run−2021−12−1−gauge−fields
mountpoint: /mnt/USER/gauge−fields

- name: nfs_config
cortx_nfs:

namespace: my−run−2021−12−1−config
mountpoint: /mnt/USER/config

steps:
- name: default

module: cpu
services:

- nfs_gauge_fields
- nfs_config

Listing 4.6: YAML file for the step A of the third scenario of LQCD.

For step B we create a namespace with a unique gauge-field file in it. We consider cloning the
complete namespace used by A being backed by the same dataset with a filter exporting a single file.
We notice here that this filter-based approach is currently considered as an advanced feature we
might not want to deliver; although we wanted to expose it here. In the non-available case we can
just use the same namespace as for step A.

Note that we now introduce some kind of template-based format with variables in it (${ID}) to
distinguish the various namespaces to be used. We consider here just replacing the variable by its
value in the template before giving the file to Slurm and the REST API.

services:

- name: nfs_gauge_fields
cortx_nfs:

namespace: my−run−2021−12−1−gauge−field−${ID}
mountpoint: /mnt/USER/${ID}/gauge−fields

- name: nfs_propagators

IO-SEA - 955811 33 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

cortx_nfs:
namespace: my−run−2021−12−1−propagators−${ID}
mountpoint: /mnt/USER/${ID}/propagators

- name: nfs_config
cortx_nfs:

namespace: my−run−2021−12−1−config
mountpoint: /mnt/USER/config

steps:
- name: default

module: cpu
services:

- nfs_gauge_fields
- nfs_propagator
- nfs_config

Listing 4.7: YAML file for the step B of the third scenario of LQCD.

Step C this follows the same philosophy:

services:

- name: nfs_propagators
cortx_nfs:

namespace: my−run−2021−12−1−propagators−${ID}
mountpoint: /mnt/USER/${ID}/propagators

- name: nfs_hadron_correlator
cortx_nfs:

namespace: my−run−2021−12−1−hadron−correlator−${ID}
mountpoint: /mnt/USER/${ID}/hadron−correlator

- name: nfs_config
cortx_nfs:

namespace: my−run−2021−12−1−config
mountpoint: /mnt/USER/config

steps:
- name: default

module: cpu
services:

- nfs_propagator
- nfs_hadron_correlator
- nfs_config

Listing 4.8: YAML file for the step C of the third scenario of LQCD.

We terminate with the file for step D:

services:

IO-SEA - 955811 34 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

- name: nfs_hadron_correlator
cortx_nfs:

namespace: my−run−2021−12−1−hadron−correlator−${ID}
mountpoint: /mnt/USER/${ID}/hadron−correlator

- name: nfs_config
cortx_nfs:

namespace: my−run−2021−12−1−config
mountpoint: /mnt/USER/config

steps:
- name: default

module: cpu
services:

- nfs_hadron_correlator
- nfs_config

Listing 4.9: YAML file for the step D of the third scenario of LQCD.

We remark here that we defined a file per step but we might want to think about handling the variable
semantics inside the REST API and injecting the variable value from the Slurm commands when
calling the steps. Again this can be seen as an advanced feature if we already have an operational
platform with the basic mode.

On the command line it we use something similar the the other approaches. Notice that we do not
start a session here but use separated jobs. As we just discussed this can be improved with an
advanced template semantics in the REST API.

create namespaces
io-sea-ns create --auto-create-dataset my-run-2021-12-1-gauge-fields
io-sea-ns create --auto-create-dataset my-run-2021-12-1-propagators
io-sea-ns create --auto-create-dataset my-run-2021-12-1-hadron-correlator
io-sea-ns create --auto-create-dataset my-run-2021-12-1-config

fill config NS with input config file
io-sea-ns put my-run-2021-12-1-config ./gauge.cfg

Run step A
srun --eph-services "services-phase-A.yaml" --bb "EPH STEP=default" ./lqcd_step_A

/mnt/USER/lqcd/gauge.cfg

prepare run of step B with its config file
io-sea-ns put my-run-2021-12-1-lqcd ./${ID}/propagator-run.cfg

create the namespace for step B & C
io-sea-ns create --clone my-run-2021-12-1-gauge-fields \

--filter gauge-field-${ID}.hdf5
my-run-2021-12-1-gauge-field-${ID}

io-sea-ns create --auto-create-dataset my-run-2021-12-1-propagator-${ID}

run step B & C & D

IO-SEA - 955811 35 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

srun --eph-services "services-phase-B.yaml" --bb "EPH STEP=default -DID=${ID}"
./lqcd_step_B \
/mnt/USER/lqcd/${ID}/propagator-run.cfg

srun --eph-services "services-phase-C.yaml" --bb "EPH STEP=default -DID=${ID}"
./lqcd_step_C \
/mnt/USER/lqcd/${ID}/propagator-run.cfg

srun --eph-services "services-phase-D.yaml" --bb "EPH STEP=default -DID=${ID}"
./lqcd_step_D

POSSIBLY LOOP ON PREVIOUS STEPS (A/B/C/D) ?

Listing 4.10: Running the LQCD campaign with the per job namespace approach.

Here we can criticize that it requires much more actions from the user and also that it will require
the user to take care of the book-keeping of the many created namespaces to destroy them at some
point which is not shown in the example. Mitigation actions will be analysed at the project level.

IO-SEA - 955811 36 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

5 Software

5.1 Flash Accelerators

The Flash Accelerators product is part of the Smart Data Management Suite developed by Atos. It
currently has three working modes (also called accelerators) which take advantage, in different ways,
of the NVMe devices installed on the data nodes.

Integrated with Slurm, upon a user’s request, one of the three working modes is activated, providing
ephemeral services to the job. The user also expresses their requirements in terms of sizing,
mountpoints, files to handle, etc.

Each working mode (also called accelerator) can be associated to a single Slurm job, or be created
independent of them. In the first case, the accelerator is provisioned before the job enters the
“running” state, and removed when the job is completed. No other job can use that accelerator. In the
second case, the accelerator is created by launching a special initialization Slurm job, but, instead of
destroying it when the job is completed, the accelerator is kept for further use. Other jobs launched
by the same user can attach to that accelerator and access the data stored in it. When no longer
needed, the accelerator can be destroyed by launching a special destruction job.

Smart Burst Buffer

The first working mode is called Smart Burst Buffer. SBB is an intelligent burst buffer providing a
POSIX interface on top of an existing POSIX parallel filesystem or an S3-compatible object-store.
When the back-end is an S3-compatible object-store, it also takes care of mapping the objects to
provide the user a POSIX interface. It provides two levels of local cache: RAM and flash storage.

It provides a library that is linked at runtime (using LD_PRELOAD) in order to intercept the POSIX
operations of the application. By doing so, it can reroute operations to the SBB server running on the
data nodes in a way transparent to the application and allowing them to remain unchanged. Fig. 8
depicts this.

To maximize the InfiniBand network bandwidth, several SBB servers can be launched on the data
nodes, each serving on a separate InfiniBand interface, a separate subset of the files.

All NVMe devices are grouped in a Logical Groups (VG) using the Logical Volume Manager (LVM).
This achieves more flexibility than just assigning raw devices, in particular in terms of size. Each SBB
server has an associated Logical Volume (LV) that will be used as a local cache.

The principal use-case for this accelerator is to catch write bursts such as check-points, but can also
be seen as a more generic cache.

IO-SEA - 955811 37 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Datanode 1

LV2

SBB

Datanode 2

LV3 LV4

SBB SBB

ib0 ib1 ib0 ib1

LV1

SBB

NVMe NVMe

Client Client Client Client Client

libsbb libsbblibsbblibsbblibsbb

Figure 8: Smart Burst Buffer.

Smart Bunch of Flash

With SBF each compute node running a step of a workflow has a dedicated NVMe storage present on
the data nodes exported to the compute nodes through NVMe-oF. It can be used as a fast, temporary
POSIX storage.

For each compute node, a LV is created on the data nodes and an XFS filesystem created on it. The
LVs are then exported using the NVMe-oF protocol. On the compute nodes, the exported LV are
seen as local NVMe devices and can thus be mounted as a normal filesystem. The fact that the
actual device is located in the data nodes is transparent to the applications.

Each compute node has it own "virtual" NVMe device and no other compute node can access it,
making it suitable for situations where a fast local, non-shared storage is required to keep temporary
files. This is illustrated in Fig. 9.

Global Bunch of Flash

GBF instantiates an ephemeral parallel BeeGFS filesystem on the data nodes using the NVMe
devices. Compute nodes participating to the workflow’s step, will mount this filesystem.

The server part of the filesystem is instantiated on the data nodes. The Management and Metadata
services are placed on the same data node and associated to a single InfiniBand interface; while the

IO-SEA - 955811 38 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Datanode 1

LV2

NVMEoF

Datanode 2

LV3 LV4

NVMeoF NVMeoF

ib0 ib1 ib0 ib1

Client Client Client

LV1

NVMEoF

Client

NVMe NVMe

Figure 9: Smart Bunch of Flash.

storage is distributed among all the data nodes associated, each one, to a single InfiniBand interface,
allowing the system to maximise the use of the network bandwidth. This can be seen in Fig. 10.

On the compute nodes, the client service is configured to connect to the corresponding filesystem
instance and mount it locally.

Its use case is similar to that of SBF, but all the compute nodes can access the data. The filesystem
is shared.

5.1.1 Improvements for the IO-SEA Project

Integration into the IO-SEA Project

The Flash Accelerators product is currently integrated with Slurm and, as such, it is possible for
the users to request an accelerator when they launch a job (using the srun command or a sbatch
script). It is also possible (of special interest for customers not using Slurm) to "manually" launch the
accelerators. To achieve this, some scripts are provided that can be invoked by other schedulers (for
instance, OpenStack) to manage the accelerators. These entry-points will be adapted for their use in
the IO-SEA project.

In addition, HSM services will be used to preload any needed data and move it back to permanent
storage before the ephemeral service is destroyed.

IO-SEA - 955811 39 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Datanode 1

LV5 LV2

Meta Storage

Mgnt

Datanode 2

LV3 LV4

Storage Storage

ib0 ib1 ib0 ib1

Client Client Client Client

LV1

Storage

Client

NVMe NVMe

Figure 10: Global Bunch of Flash.

Use of NVRAM

Flash Accelerators currently support NVMe but not yet NVRAM devices. Support will be added during
the timeframe of the IO-SEA project allowing Flash Accelerators to take advantage of that hardware,
which will be available on the data nodes.

Adding Other Filesystems to GBF

Global Bunch of Flash will be enhanced to support other filesystems in addition to BeeGFS. It will be
possible for administrators to deploy their own scripts instantiating different filesystems, which will be
invoked by GBF’s framework. These scripts will have to provide a predefined API for GBF to be able
to invoke it. When launching a job with GBF, user’s will be able to specify the filesystem they want to
use, from the list of the supported filesystems (those supported natively by GBF, and those for which
the administrators provided an instantiation script).

This feature is currently under heavy development and is expected to be delivered in the next release
of Flash Accelerators.

IO-SEA - 955811 40 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

5.2 Motr / CORTX

CORTX Motr (formerly “Mero” and initially funded by the SAGE and Sage2 projects [15]) is the
foundational open-source object-store used in the IO-SEA project on top of which various storage
and I/O services (S3, pNFS, etc.) are exposed [16]. CORTX Motr is essentially an object-store and a
KV store that can be used to describe and reference the objects. Data can be organized and stored
in a flat hierarchy of objects. Motr forms the core object-store. Motr and all the tools and utilities
needed to instantiate, manage and access Motr is called CORTX. CORTX Motr runs on top of various
types of storage device technologies (SSD, HDD, NVRAM). The storage devices are assumed to be
distributed through networks such as 10/40/100 GbE, InfiniBand, etc.

Motr is accessed through the Motr API that has an access and an extension interface. The access
interface is used to drive object and KV store I/O. Since Motr is a very low-level representation of
data, higher level “gateways” such as POSIX, pNFS, S3, etc as shown in Fig. 11), can be easily built
on top of the Motr API. These gateways are analogous to the services used in IO-SEA ephemeral
services.

The extension interface is a publisher/subscriber interface on top of which third party applications can
be added (such as HSM applications, Archival applications, Backup applications, fsck-like file system
checking utilities, etc.).

Figure 11: Motr architecture.

Motr is built to be horizontally scalable, where the system grows linearly as more nodes are added
with no metadata hot spots and a share-nothing I/O path. Motr can also scale vertically to utilize more
memory and processors on the nodes. Motr is also highly fault tolerant with data that can be striped
and distributed across the storage network using very flexible erasure coding techniques.

Unlike other object-stores, observability is built into Motr where telemetry information from the Motr
stack can be gathered and dialed up/down as needed (through so called structured ADDB, or,
Analysis and Diagnostics Data Base records). It is to be noted that Motr runs in user space on any
version of Linux.

IO-SEA - 955811 41 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Figure 12: Example of Motr data flow with and S3 service on top.

Fig. 12 depicts the data flow in the Motr stack that uses a service on top of the Motr API, say, an S3
server (which could potentially be an ephemeral service). The S3 objects are mapped to Motr objects
and their attributes are stored as key-value pairs. Library libmotr is the main piece of the Motr API.
I/O service and DIX service form the key components of the Motr service.

Motr objects have FIDs (or OIDs). The objects are mapped across different devices and across
different enclosures (the “c”s in Fig. 13) and potentially different racks using Parity Declustered RAID
algorithms, with 𝑁 + 𝐾 + 𝑆 (𝑁 data units, 𝐾 parity units and 𝑆 spare units), where the 𝑁 , 𝐾
and 𝑆 can be manipulated. Each object hence has a layout that describes the mapping to storage
resources.

Figure 13: Motr objects mapped to different devices, enclosures and racks.

An object in Motr is an array of blocks. When creating a new object a block size is selected and it is
stored according to a layout. There are a few different layouts in Motr, the default is parity de-clustered
layout.

IO-SEA - 955811 42 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

In Fig. 13), the object can be seen represented at the top of the figure as horizontal blocks which are
divided into groups/stripes.

For each stripe, Motr will compute additional parity blocks. In Fig. 13), for every 8 data blocks, 2 parity
blocks are built. Data and parity blocks are then scattered across several devices. If any 2 of the 10
blocks (8 data blocks and 2 parity blocks) are lost. They can be rebuilt from the remaining 8 blocks.

Using parity de-clustering, the striping can be done over 10, 20, 100 or more devices. Having the
ability to stripe over multiple devices, repairs can become more efficient since the same set of blocks
are scattered over many devices. In the event of device loss or failure. A smaller percentage of the
storage capacity needs to be read to complete the repair.

Motr also considers device hierarchy and does not assume that the system will be a flat array of
devices. In Fig. 13), each device will be part of an enclosure, which will be part of a rack. As such the
striping algorithm can be setup to tolerate different levels of failure and by distributing data across
hierarchically arranged devices. Accessing data when a device or an enclosure has failed will still be
possible.

Fig. 14 shows a possible mapping of S3 objects to Motr objects that sit behind Motr services (I/O
Service).

Figure 14: Mapping of an S3 object to different Motr objects (using Motr I/O services) using a specific
𝑁 +𝐾 + 𝑆 PDRAID configuration.

Motr also has a Distributed Transaction Manager (DTM) such as Motr operations can touch multiple
nodes and nodes can fail independently. DTM groups Motr operations into atomic transactions that
are atomically dealt with in case of failures. This enables the system to “roll back” to previous stable
states of the object storage system in case of any failures.

ADDB provides built in fine grained telemetry which is very useful as the system grows and complexity
increases. ADDBs answer questions such as:

• How well the system is utilised?

• Is it failure or expected behaviour?

IO-SEA - 955811 43 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

• Is it system or application behaviour?

ADDB is instrumented on the client and server and has a payload of 16 64-bit values, which can
always be turned on. These records can be time-stamped and cross referenced. Listing 5.1 shows
an ADDB record in Motr and Fig. 15 of the type of analysis possible:

* 2020-02-20-14:36:13.687531192 alloc size: 40, addr: @0x7fd27c53eb20
| node <f3b62b87d9e642b2:96a4e0520cc5477b>
| locality 1
| thread 7fd28f5fe700
| fom @0x7fd1f804f710, ’IO fom’ transitions: 13 phase: Zero-copy finish
| stob-io-launch 2020-02-20-14:36:13.629431319, <200000000000003:10000>, count: 8,

bvec-nr: 8, ivec-nr: 1, offset: 0
| stob-io-launch 2020-02-20-14:36:13.666152841, <100000000adf11e:3>, count: 8, bvec-nr:

8, ivec-nr: 8, offset: 65536

Listing 5.1: Example ADDB record in Motr

Figure 15: Example ADDB analysis.

ADDB records can also potentially be fed into simulators to understand “what if” scenarios.

5.2.1 Motr API

We here describe the key aspects of the Motr API on top of which various services can be launched.
Motr operations are typically asynchronous. Objects are 128-bit persistent identifiers assigned by the
user. Objects can be created and deleted, as well as the can be read, written synced. The same
goes for the KV store. In addition its possible to GET/PUT/DEL/NEXT on the KV store pairs.

Motr objects are an array of data blocks in the range from 0 to 264 ([0, 264)). They have a flat
name-space and are network striped as described earlier. There are no usual metadata (attributes,

IO-SEA - 955811 44 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

etc.) exposed to users, such as object size. This is to maximize I/O performance by avoiding
updating object attributes. Motr also has internal object attributes such as data layout. There
are CREATE/DELETE/WRITE/ALLOC/FREE operations and SCATTER GATHER READ/WRITE
operations defined for these objects.

The KV store is distributed and contains bit strings with values accessed as a whole. Iterations are
done in the order of keys. Operations allowable are CREATE, DELETE, LOOKUP and LIST for the
indices, and, GET, PUT, DEL and NEXT for index queries. Scatter-gather-scatter operations are also
permitted. Users use indices to build metadata structures – names-paces and file attributes, etc.
Table 1 summarize the various operations.

Entity Operations (for
both object and index)

M0_EO_CREATE Create an entity
M0_EO_DELETE Delete an entity
M0_EO_OPEN Open an entity

M0_EO_SYNC Flush entity data to storage devices

M0_EO_GETATTR For Motr internal uses only
M0_EO_SETATTR For Motr internal uses only

M0_EO_LAYOUT _GET For composite layout only
M0_EO_LAYOUT _SET For composite layout only

Object Operations
M0_OC_READ IOs in scatter-gather-scatter fashion
M0_OC_WRITE

Index Operations
M0_IC_GET Index queries, including GET, PUT,
M0_IC_PUT DEL and NEXT
M0_IC_DEL

M0_IC_NEXT

M0_IC_LOOKUP Check an index for an existence
M0_IC_LIST Given index id, get the list of next in-

dices

Table 1: Basic operations (objects and indices) through the Motr API.

IO-SEA - 955811 45 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Object Access m0_obj_init/fini() Initialise/finalise in-memory object
data structure

m0_entity_create() Create and initialise operation for ob-
ject creation and deletion

m0_entity_delete()

m0_entity_open() Once opened, the object data struc-
ture can be used in later READ/WRITE
ops

m0_obj_op() Create and initialise an object opera-
tion specified by the opcode

m0_sync_op_init() Create and initialise a SYNC operation
m0_sync_entity_add() Add an entity to SYNC operation
m0_sync_op_add() Add an ’op’ to SYNC operation

Object Lock m0_obj_lock_init() Currently Motr only supports exclu-
sive "whole object" lock in a group

m0_obj_lock_fini()

m0_obj_lock_get_sync()

m0_obj_lock_get()

m0_obj_lock_put()

Table 2: Object access operations through the Motr API.

5.2.2 Improvements for the IO-SEA Project

Fig. 16 shows the overview of Motr usage in the IO-SEA project. Motr API (Client) and services
are deployed on the data nodes exposing the NVRAM/NVMe storage resources there as described
earlier, exposing the ephemeral services. HSM needs to be involved in moving the data to long-term
data storage after the ephemeral services and the Motr services are shut down.

The improvements needed within Motr to work in the ephemeral environment are:

• Ability to address and work with distributed NVRAM resources across the data nodes

• Ability to provide Object ID (OID) management for various services

• Ability to interface with DASI

• Ability to interface with all access protocols within the ephemeral environment – as defined as
part of the co-design process

• Support metric gathering and serialization of ADDB records to a common defined IO-SEA
format.

IO-SEA - 955811 46 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Index (Key-value) Access m0_idx_init/fini() Initialise/finalise in-memory object
data structure

m0_entity_create() Create and initialise index cre-
ation/deletion operations

m0_entity_delete()

m0_idx_op() Create and initialise index query oper-
ation. Motr supports GET, PUT, DEL
and NEXT queries

m0_sync_op_init Flush index key and value to persis-
tent storage devices

m0_sync_entity_add

m0_sync_op_add

Table 3: Index operations through the Motr API.

Figure 16: Motr in IO-SEA.

IO-SEA - 955811 47 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

5.3 ParaStation Management

ParaStation Management, the process management facility of ParaStation Modulo, offers a com-
plete process management system that can in turn be combined with an outer and more generic
resource manager together with a batch queuing system plus job scheduler like Slurm. The process
management of ParaStation Modulo includes the creation of processes on remote nodes, control of
the I/O channels of the remotely started processes, and the management of signals across node
boundaries.

Since ParaStation Management knows about the dependencies between the processes and threads
building a parallel session on a number of nodes of the cluster, it is able to take them respectively into
account. That way, processes are no longer independent but form an entity in the same sense as the
nodes are no longer independent computers but form a cluster of nodes as a self-contained system.
This feature of ParaStation Management for handling distributed processes as a single unit plays an
important role especially in the context of job control and allocation-internal scheduling.

One important key to ParaStation’s scalability is its efficient communication subsystem for inter-
daemon messages. This subsystem, which uses the implementation of a highly-scalable Reliable
Datagram Protocol (RDP), is used for resource monitoring as well as for launching and controlling
parallel processes by means of a network of ParaStation Daemons (psid). So, for example, this
subsystem also performs process pinning, I/O forwarding and signal handling, and it ensures a proper
resource cleanup after job termination.

psslurm When used together with Slurm, a ParaStation Management plugin called psslurm comes
into play. This plugin (shown in Fig. 17) replaces all components of Slurm that are running on each
compute node, namely slurmd and slurmstepd.

Node 2Master
running the Slurm
control daemon:

slurmctld

Login
accepting the user’s
Slurm commands:

squeue

scontrol

sbatch

srun

Node 1
spawning the

actual user processes

mpiexec

jobscript

psid

rank 0

psslurm

job requests

interactive
stdout/stderr

no
de

 re
gi

st
ra

tio
n

jo
b

te
rm

in
at

io
n

Node N

psid

rank N-1

psslurm…
psid

rank 1

psslurm
RDP RDPRDP

…

no
de

 re
gi

st
ra

tio
n

jo
b

te
rm

in
at

io
n

no
de

 re
gi

st
ra

tio
n

jo
b

te
rm

in
at

io
n

no
de

 re
gi

st
ra

tio
n

jo
b

te
rm

in
at

io
n

Figure 17: Orchestration between Slurm and ParaStation Management via its psslurm plugin.

IO-SEA - 955811 48 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

For the integration of Flash Accelerators at compute node level the “Slurm Plug-in Architecture for
Node and job Kontrol” (SPANK) will be used. SPANK provides a generic interface for stack-able
plugins which may be used to dynamically modify the job environment. ParaStation Management’s
psslurm plugin has basic support for SPANK, but not all API calls are fully support yet. The reason for
this are different design decisions on how to start the prologue and compute processes.

In earlier versions, Slurm was unable to execute the prologue in parallel on all compute nodes when
a job was started. The prologue could only be spawned on the mother superior node. Additionally an
error in the prologue execution could re-queue the job, but since the job was already in state “running”
accounting data was affected. To overcome this shortcomings psslurm is using the slurmctld prologue
to execute the prologue on all nodes of the allocation in job state “configuring”. This enabled the best
integration of the ParaStation Healthchecker to verify the node health status before the actual job
was even started. But this results in the prologue running in a different process context than in vanilla
Slurm.

There is a similar design difference between psslurm (Fig. 18a) and slurmd (Fig. 18b) at the startup
phase of the compute processes. In vanilla Slurm the slurmd is executing one slurmstepd process
which is responsible for all processes of the local compute node. In contrast the psid spawns
one psidforwarder for every compute process in addition to a psslurmstep forwarder. Since the
psidforwarder is a child of the psid changes done in SPANK calls processed in the psslurmstep
forwarder will not be reflected in the psidforwarder contexts.

Depending on the complexity of the SPANK plugins it can be challenging to adopt it to the ParaStation
Management runtime environment. To ensure a seamless support of the SPANK plugins developed in
IO-SEA the psid design will be refined with the goal to run SPANK plugins without any modification.

5.3.1 Improvements for the IO-SEA Project

ParaStation Management will be enhanced to support the extended resource management described
in this document. The details of the work to be done depends on the implementation details of the
components involved and have to be determined at a later stage.

In summary we need to support

• General information exchange between components of the process management

This might be forwarding of environment variables or configuration files.

• Workflow support

• SBB Slurm plugin developed by Atos

Since psslurm replaces parts of Slurm that are responsible to run parts of Slurm plugins, it
sometimes needs adjustments (to psslurm) to smoothly run more complex Slurm plugins as we
expect to be used in the IO-SEA architecture.

IO-SEA - 955811 49 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

spawn

Rank 0

psid
psslurm

⇒ spank_init
⇒ spank_slurmd_exit

psslurm
stepforwarder

⇒ spank_init
⇒ spank_init_post_opt
⇒ spank_user_init
⇒ spank_exit

⇒ spank_task_post_fork
⇒ spank_task_exit

psidforwarder

Rank 0

⇒ spank_task_init_privileged
⇒ spank_task_init

⇒ spank_task_post_fork
⇒ spank_task_exit

psidforwarder

Rank n-1

⇒ spank_task_init_privileged
⇒ spank_task_init

srun

⇒ spank_local_user_init

Input/Output for all
ranks of the step

spawn spawnspawn

spawn

(a) SPANK API implementation in ParaStation Management

Rank 0

slurmd

⇒ spank_init
⇒ spank_slurmd_exit

slurmstepd

⇒ spank_init
⇒ spank_init_post_opt
⇒ spank_user_init
⇒ spank_task_post_fork
⇒ spank_task_exit
⇒ spank_exit

Rank 0

⇒ spank_task_init_privileged
⇒ spank_task_init

⇒ spank_task_init_privileged
⇒ spank_task_init

srun

⇒ spank_local_user_init

Input/Output for all
ranks of the step

Rank n-1

spawn

spawn

(b) SPANK API implementation in Slurm

Figure 18: SPANK API implementation differences

IO-SEA - 955811 50 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

6 Summary

During the ten months since Work Package 2 started, the main achievement was to reach a common
understanding of this work package’s goals, completed with a global picture of the IO-SEA project.
We held several discussions within our work package and with the other work packages in order to
understand what we could offer them, what they expected from Work Package 2 and what we could
expect from them.

This effort, which includes a small "Proof of Concept", translated into the architecture described in
this document. This architecture is not final because the other technical work packages are also
working in their architectures, things are still moving, and our current understanding and decisions
will probably have to adapt to those changes. At the same time, as our own understanding improves
and evolves, some decisions may be reviewed. Nevertheless, only small changes and corrections
are expected. The foundations of our architecture will remain unchanged.

The work done during these months helped us identify several ideas. We determined which ephemeral
services to provide, but also that the integration of other ephemeral services should be simple. We
also decided that the Yorc orchestrator will be used to manage the data nodes and ephemeral
services, but that it should be easily replaceable in case we need to use another orchestrator. The
integration with Slurm and OpenStack should be generic enough to allow other tools to manage the
workflows. In other words, the solution should be flexible enough to be independent of and particular
technology.

The next step is to start developing all these concepts. We will first use just a few ephemeral services
with no interaction with the HSM (Work Package 4) to get everything just working and validate the
proposed ideas. In a second step, we will use all the ephemeral services, with data moving across
the different storage tiers, to reach to the final solution.

IO-SEA - 955811 51 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Glossary

Symbols

ParaStation Management Process management facility of ParaStation Modulo.

A

ADDB Motr’s Analysis and Diagnostics Data Base.

API An Application Programming Interface is a connection between com-
puter programs.

Atos Atos is Europe’s largest digital services deliverer.

B

BeeGFS BeeGFS is a hardware-independent POSIX parallel file system.

burst buffer A fast intermediate storage layer positioned between the front-end
computing processes and the back-end storage systems. It bridges
the performance gap between the processing speed of the compute
nodes and the Input/output (I/O) bandwidth of the storage systems.

C

CEA The French Alternative Energies and Atomic Energy Commission.

CORTX A Motr extension handling the access rights and providing and S3
interface.

CPU Central Processing Unit.

D

DASI Data Access and Storage Interface developed in Work Package 5.

data node Data nodes are cluster nodes dedicated to providing I/O services. They
are equipped with multiple NVMe and/or NVRAM devices used for fast,
local storage.

dataset A set of data logically related that is usually produced, stored and used
together. For instances, data produced during a given campaign.

DIMM DIMM or dual in-line memory module, is commonly called a RAM
stick.

DIX Motr’s Distributed IndeX and distributed index module.

IO-SEA - 955811 52 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Docker Docker is a set of platform as a service products that use OS-level
virtualization to deliver software in packages called containers.

Docker Compose Compose is a tool for defining and running multi-container Docker
applications.

F

FID File IDentifier.

fsck A UNIX command to check a file system.

G

GbE Gigabit Ethernet: an ethernet network interface capable of transfer
rates in the gigabit range.

GBF The Global Bunch of Flash is a temporary parallel filesystem manage-
ment product included in the ATOS Flash Accelerator suite.

GNSS A Global Navigation Satellite System such as Europe’s Galileo or
United States of America’s Global Positioning System.

GPFS The General Parallel File System is a high-performance clustered file
system software developed by IBM.

GPU Graphics Processing Unit.

H

HDD Hard Disk Drive.

HSM Hierarchical Storage Management.

HTTP HyperText Transfer Protocol: common Internet protocol to access web
pages or download files.

I

I/O Input/Output.

InfiniBand InfiniBand (IB) is a computer networking communications standard
used in high-performance computing that features very high throughput
and very low latency.

K

KV store Key-Value store. A store that keeps values addressing them with a key
instead of an address.

L

IO-SEA - 955811 53 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

layout In Motr a layout is a map determining where file data and meta-data
are located. The layout is by itself a piece of meta-data.

LD_PRELOAD A special environment variable that, when set to point a shared lybrary,
will instruct the dynamic linker to bind symbols from that library before
any other library.

Linux Linux is a free and open-source, monolithic, modular, multitasking,
Unix-like operating system kernel widely used in High Performance
Computing clusters.

LQCD Lattice quantum-chromodynamics is a numerical framework for calcu-
lating physical properties of hadrons, composite particles composed of
quarks.

Lustre The Lustre®file system is an open-source, parallel file system that
supports many requirements of leadership class HPC simulation envi-
ronments.

LV A Logical Volume is a part of a VG that can be exposed as a block
device, on top of which a filesystem can be created.

LVM The Logical Volume Manager is a device mapper framework that pro-
vides logical volume management for the Linux kernel.

M

Motr Seagate’s object store.

MSA Modular Supercomputing Architecture.

N

namespace How the stored information will be presented to an application. For
a POSIX namespace, it will be the directory tree and files; for an S3
namespace, the alternative object identifiers.

NFS Network File System is a distributed file system protocol allowing a
user on a client computer to access files over a computer network
much like local storage is accessed.

NVDIMM A DIMM of NVRAM.

NVMe Non-Volatile Memory Express.

NVMe-oF NVM Express over Fabrics.

NVRAM Non-Volatile Random Access Memory.

O

IO-SEA - 955811 54 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

object-store A data storage that manages data as objects, as opposed to other
storage architectures like file systems which manages data as a file
hierarchy.

OID Object IDentifier.

OpenStack A free, open standard cloud computing platform mostly deployed as
infrastructure-as-a-service (IaaS) in both public and private clouds.

P

ParaStation Healthchecker Tool running a configurable set of tests on a cluster node to check the
node’s health status.

ParaStation Modulo HPC middleware and management stack for Modular Supercomput-
ing.

PCM Phase-Change Memory, Non-volatile memory technology.

pNFS Parallel NFS.

POC Proof Of Concept.

POSIX Portable Operating System Interface (POSIX) is a family of standards
specified by the IEEE Computer Society for maintaining compatibility
between operating systems.

psid The daemons forming the distributed management network of ParaStation
Management.

psidforwarder The compute node process managing a single client process in ParaStation
Management.

psslurm ParaStation Management plugin for Slurm support.

psslurmstep forwarder The compute node process managing a step in ParaStation Manage-
ment.

R

RAID Redundant Array of Independent Disks.

RDP Highly-scalable Reliable Datagram Protocol.

REST API An API providing remote services over HTTP.

S

S3 Amazon’s Simple Storage Service: HTTP-based protocol to access
data. Initially developed by Amazon, its generalisation made it a de
facto standard for data access in cloud services.

SBB The Smart Burst Buffer is a burst buffer product included in the ATOS
Flash Accelerator suite.

IO-SEA - 955811 55 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

SBF The Smart Bunch of Flash is a NVMe-oF management product included
in the ATOS Flash Accelerator suite.

Seagate Seagate is Europe’s largest storage provider.

Slurm Slurm is an open-source cluster management and job scheduling
system.

slurmctld The central management daemon of Slurm.

slurmd The compute node daemon of Slurm.

slurmstepd The compute node process managing a step in Slurm.

SPANK Slurm Plug-in Architecture for Node and job (K)control.

SSD Solid State Drive.

step A step is an application running in a computing module. Concatenated
steps form a workflow.

STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM)
has been chosen by the industry as the non-volatile memory technology
of choice to replace Embedded Flash at advanced technology nodes.

U

URL A Uniform Resource Locator, colloquially termed a web address, is a
reference to a web resource that specifies its location on a computer
network and a mechanism for retrieving it.

V

VG A Volume Group is a set of physical devices that will be managed by
the LVM.

W

workflow A concatenation of steps processing data together in order to make a
particular computation.

X

XFS XFS is an open-source, high-performance 64-bit journaling file system
created by Silicon Graphics, Inc.

Y

YAML YAML stands for "YAML Ain’t Markup Language" and is a human-
friendly data serialization language for all programming languages.

Yorc Yorc stands for "Ystia Orchestrator" and is an hybrid cloud/HPC TOSCA
orchestrator.

IO-SEA - 955811 56 26.01.2022

D2.1 Ephemeral Data Access Environment: Concepts and Architecture

Bibliography

[1] Seagate. Motr/CORTX. https://github.com/Seagate/cortx-motr, 2021.

[2] NVMe. https://nvmexpress.org.

[3] NV-RAM. https://en.wikipedia.org/wiki/Non-volatile_random-access_memory.

[4] Flash Accelerators. https://atos.net/en/2019/product-news_2019_02_07/
atos-boosts-hpc-application-efficiency-new-flash-accelerator-solution.

[5] Yorc. https://github.com/ystia/yorc.

[6] Yaml. https://yaml.org.

[7] STT-MRAM. https://www.mram-info.com/stt-mram.

[8] Memristor. https://www.sciencedirect.com/science/article/pii/
B9780857098030500114.

[9] Pcm. https://iopscience.iop.org/article/10.1088/1361-6463/ab7794.

[10] 3dxpoint. https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works.

[11] Pmem. https://pmem.io.

[12] Percipient storage for exascale data centric computing 2. https://cordis.europa.eu/
project/id/800999.

[13] Alberto Scionti, Jan Martinovic, Olivier Terzo, Etienne Walter, Marc Levrier, Stephan Hachinger,
Donato Magarielli, Thierry Goubier, Stephane Louise, Antonio Parodi, et al. Hpc, cloud and
big-data convergent architectures: The lexis approach. In Conference on Complex, Intelligent,
and Software Intensive Systems, pages 200–212. Springer, 2019.

[14] E. B. Gregory, P. Couvée, and M. Golasowski. IO-SEA D1.1 Application and co-design. Technical
report, IO-Software for Exascale Architectures, 2021.

[15] Sage2 project’s home page. https://sagestorage.eu.

[16] Seagate. CORTX. https://github.com/Seagate/cortx, 2021.

IO-SEA - 955811 57 26.01.2022

https://github.com/Seagate/cortx-motr
https://nvmexpress.org
https://en.wikipedia.org/wiki/Non-volatile_random-access_memory
https://atos.net/en/2019/product-news_2019_02_07/atos-boosts-hpc-application-efficiency-new-flash-accelerator-solution
https://atos.net/en/2019/product-news_2019_02_07/atos-boosts-hpc-application-efficiency-new-flash-accelerator-solution
https://github.com/ystia/yorc
https://yaml.org
https://www.mram-info.com/stt-mram
https://www.sciencedirect.com/science/article/pii/B9780857098030500114
https://www.sciencedirect.com/science/article/pii/B9780857098030500114
https://iopscience.iop.org/article/10.1088/1361-6463/ab7794
https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works
https://pmem.io
https://cordis.europa.eu/project/id/800999
https://cordis.europa.eu/project/id/800999
https://sagestorage.eu
https://github.com/Seagate/cortx

	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	List of Figures
	List of Listings
	List of Tables
	Executive Summary
	Introduction
	Architecture
	Concepts
	Overview
	Task 2.1 - Ephemeral Data Access Environment
	Task 2.2 - NVMe and Non-Volatile Memory usage on data nodes
	Task 2.3 - Data Operation Scheduling

	Interfaces
	Ephemeral Services Lifecycle Control
	REST API proof of concept
	Data Movement

	The LQCD Use-Case
	LQCD Application Phases And Files
	Mapping to Datasets And Namespaces
	User Semantics with a Unique Namespace
	User Semantics With Phase Dedicated Namespaces
	User Semantics With Many Per-Step Namespaces

	Software
	Flash Accelerators
	Motr / CORTX
	ParaStation Management

	Summary
	Glossary
	Bibliography

